ESD ACCESSION LIST

7N
ESD-TR-69-371 ESTI Call Moy EH""E%' 1 DSQ MTR-743
Esrz f/le coav Copy Mo | o [oy

THE MI-3 ASSEMBLER REFERENCE MANUAL

R. W. Cornelli

DECEMBER EgD R;COPD C"’ -\

RETURN TO
SCIENTIFIC & TECHNICAL INFORMATION DIVISION
- (ESTI}, BUILDING 1211

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 7T00A
Prepared by

This documert has been approved for public

l limited.

release and sale; its distribution is un-

THE MITRE CORPORATION
Bedford, Massachusetts

Contract F19(628)-68-C-0365

AD6IAL3T)

When U.S. Government drawings, specifico-
tions, or other dato are used for any purpose
other than a definitely related government
procurement operation, the government there-
by incurs no responsibility nor any obligation
whatsoever; and the fact that the government
moy have formulated, furnished, or in any
way supplied the said drawings, specifico-
tions, or other data is not to be regorded by
implication or otherwise, as in any manner
licensing the holder or any other person or
corporation, or conveying ony rights or per-
mission to manufacture, use, or sell any
patented invention that may in any way be
reloted thereto.

Do not return this copy. Retain or destroy.

ESD-TR-69-371 MTR-743

THE MI-3 ASSEMBLER REFERENCE MANUAL

R. W. Cornelli

DECEMBER 1969

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 700A
Prepared by

This document has been approved for pyblic THE MITRE CORPORATION
release ond sale; its distribution is un- Bedford, Massachusetts
| limited, Contract F19(628)-68-C-0365

FOREWORD

This report describes a one pass assembler built by the MITRE
Corporation for a family of microprogrammable computers. It is in
partial fulfillment of Project 7120 under Contract No. F19(628)-68-C-
0365. It was prepared under the cognizance of Mr. Robert W. Cornelli
of the MITRE Corporation, Bedford, Massachusetts. The USAF project
monitor is Mr. Russell A, Meier.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force approval
of the report's findings or conclusions. It is published only for the exchange
and stimulation of ideas.

WILLIAM F. HEISLER, Colonel, USAF
Chief, Command Systems Division
Directorate of Planning and Technology

ii

ABSTRACT

MI-3 is a primitive, interactive, one pass assembler which
| assembles in-core code for a family of microprogrammed computers
based on an Interdata 3 (I-3) micromachine,

iii

TABLE OF CONTENTS

- Page
SECTION I INTRODUCTION 1
- SECTION II DATA TYPES 2
INTEGERS 2
SYMBOLS 2
S Symbols 2
G and L Symbols 3
REGISTER IDENTIFIERS 3
ASTERISK (*) 3
SECTION III FORMATS 4
LOC FIELD 4
OP FIELD 4
DATA FIELD 4
COMMENTS FIELD 5
. SECTION IV EXPRESSIONS 5
SECTION V INSTRUCTIONS 7
’ OPERATION CODES OF TYPE 1 8
OPERATION CODES OF TYPE 2 9
OPERATION CODES OF TYPE 3 10
OPERATION CODES OF TYPE 4 11
SECTION VI PSEUDO-OPERATIONS 12
DC (DEFINE CONSTANT) 12
DS (DEFINE STORAGE) 12
END 13
EQU (EQUALS) 13
OPD (OPERATION DEFINITION) 14
ORG (ORIGIN) 15
PUT 15
SID (SET INPUT DEVICE) 17
. SOD (SET OUTPUT DEVICE) 17
SECTION VII IDIOSYNCRASIES 18
. MESSAGES 18
INPUT 18
OuTPUT 19

LANGUAGE 19

SECTION VIII
APPENDIX I

APPENDIX II
APPENDIX III
APPENDIX IV
APPENDIX V

TABLE OF CONTENTS (Concluded)

EXAMPLES

MNEMONICS AND VALUES
FORMAL SYNTAX

ALPHABETIC LIST OF MNEMONICS
NUMERIC LIST OF MNEMONICS
INDEX

vi

SECTION I

INTRODUCTION

MI-3 is a primitive, interactive, one pass assembler which
assemhles in-core code for a family of microprogrammed computers
based on an Interdata 3 (I-3) micromachine,

Versions of MI-3 have been assembled and operate under the
Calliope and Venus microprograms, Calliope is a MITRE-produced
superset of the I-3 delivered machine, Venus, also MITRE pro-
duced, provides multiprogramming capabilities; it includes most
instructions implemented in Calliope, plus many others,

MI-3 was written for interim use, to allow time for a more
powerful, flexible and useful assembler to be built, As a result,
it betrays a number of anomalies and idiosyncracies not normally

to be expected of a more finished product. These are described
in Section VII,

SECTION II

DATA TYPES

INTEGERS

All integers are represented in the MI-3 Assembly languages in
hex (base 16) as a string of hex digits., No facilities are provided
for representing integers in either decimal or binary.

SYMBOLS

Three kinds of symbols are implemented in MI-3, known as S, G
and L symbols,

S Svmbols

An S symbol is formed by writing S followed by two hex digits,
These symbols are unusual, in that they may be defined as often as
desired, When § symbols are referenced, a B or F must be appended,
specifying whether the symbol is defined before (Backward) or ahead
(Eorward) of the reference,

The occurrence of a backward S symbol in a line of code refers
to the closest previous definition of that symbol, The occurrence
of a forward S symbol in a line of code refers to the closest fol-
lowing definition of that symbol, S symbol references never refer
to the line of code in which they occur,

Thus, for example,

sp1 LHI R6,S@1F

sg1 BAL R7,S@1B

The S@PIF in the LHI refers to the S@l on the BAL. The S@1B on
the BAL refers to the S@l1 on the LHI,

G and L Symbols

G and L symbols consist of the letter G or L followed by 1 to
5 characters chosen from the alphabet and the digits,

For example:

LSA4
G123IM
LPQRST

Usage of G and L symbols is presently identical, An unimple=
mented addition would limit the scope (the set of statements over
which they are defined) of L symbols so that they become, in a sense
Local., G symbols would not be so limited, and thus would be Global,

REGISTER IDENTIFIERS

A programmer may use a register identifier when he wishes to
draw special attention to the fact that a value is to designate a
general purpose register (otherwise, an integer will do just as
well),

A register identifer is written as the letter R followed by
a single hex digit identifying the particular register.

Thus, R6 can be used instead of 6, RD instead of D,

ASTERISK (%)

The * is a symbol which may be used to denote the current value
of the location counter, When used in an instruction, its value is
the address of the first byte of the instruction, in a DC or DS the
address of the first byte assigned,

SECTION IIT

FORMATS

A program consists of a sequence of lines, Each line contains
a LOC (location) field, an OP (operation code) field, a DATA field,
and a COMMENTS field, Fields are separated from other fields by one
Oor more spaces:

Loc oP DATA COMMENTS

Embedded spaces may not appear in the LOC, OP or DATA fields,

LOC FIELD

The LOC field is optional on instructions and on the DC and DS
pseudo-operations, required on an EQU line, and ignored on all others,

When present, it must start in the first input column, and con-
sist of a G, L or S symbol, In the EQU line, the symbol in the LOC
field is assigned the value of the operand of the EQU; in all other
cases, the symbol takes on the value of the current location counter

C*).

OP FIELD

The OP field contains the name of an instruction or a pseudo-
operation, It may be from 1 to 4 alphanumeric characters,

If the LOC field is absent, the OP field may still not start
before the second input column, It is terminated by the first blank
character,

DATA FIELD

The DATA field, separated from the OP field by one or more
spaces, contains the operands for instructions and pseudo-operations,

COMMENTS FIELD

Input columns beyond the DATA field may be used to enter comments
into the program, and may contain embedded blanks, The COMMENTS field
is separated from the OP field by one or more spaces,

4

SECTION IV

EXPRESSIONS

The DATA field of all instructions and most pseudo-operations
contuin expressions. An expression is one or more symbols and/or
numbers, connected with the operators + and/or -

Arithmetic may be perrormed on any combinations of:

backward $ symbols

register identifiers

integers

* (the current location counter)

Arithmetic mav unot Le¢ performed on:

forward S symbols
L symbols
G symbols

When these symbols are used, they must stand alone,

Each component of an expression is considered to be a 16=bit
value; 16-bit sums and differences are computed in two's complement
arithmetic, When the value of an expression is inserted into a
field of an instruction and the field is less than 16 bits wide,
the leftmost bits of the value are stripped off,

Examples:

LXYZ
GBQ3F
SAAF
S22B

*

2A

R5
SP1B=7 +*
RB+23
@-12

Counter Examples:

2?2;:; (Arithmetic not legal on L symbols,

SAAF-S@1B G symbol§ and forward S symbols)

-12 (+ and - must appear between two
symbols or numbers)

SECTION V
INSTRUCTIONS

Four assembler fermats, which assemble into two basic machine
rormats, are supported for instructions, The machine formats are
either 16 or 32 bits long, The first 8 bits of each contains the
operation code:

| 0P | RL | R2 |

| OP | R1 | X2 | A]

Rl, R2 and X2 ave 4-bit fields; A is 16 bits,

Llype Data Field Format Assembled Bits
1 R1,R2 16
2 R1,A(X2) or R1,A 32
3 R2 16
4 A(X2) or A 32

"ny expression may be used to define the A field, The Rl, R2
and a. fields may be defined using expressions, but not L, G or
f.ruard S symbols, Expressions used to define the R1, R2 and X2
i s are evaluated as 16 bits, then truncated to 4 bits,

Except for the always optional X2 field, fields may not be
omitted; @ may be entered instead,

In operations of types 1 and 2, the Rl field usually refers
to one of the general registers, 1In the BTC, BTICR, BFC and BFCR
instructions, however, the Rl field is a mask which determines the
condicions to be tested, Type 3 and 4 operations represent extended
mnemonics for such instructions in which the mask, i,e, the Rl field,
is implicit in the mmemonic,

OPERATION CODES OF TYPE 1

An operation code of type 1 requires two operands, Rl and R2,
both four bits in length, It is written in the form:

LOC OP RI,R2
and is assembled into 16 bits:
| op | r1 | R2]
Examples:
LER R6,R5
BALR S@1B+3,*-S3FB

Counter Examples:

BTCR

STBR

LABC,R7 (L and G symbols may not
R5,G124 be used to define an Rl
or R2 field)

,RC (operand may not be omitted)

OPERATION CODES OF TYPE 2

An operation code of type 2 requires two operands, Rl (4 bits)

and A or A(X2), Rl and X2 are 4 bits long, and A is 16 bits, It is
vritten:

LOC oP RI,A
or
LOC oP R1,A(X2)

and is assembled into 32 bits:

| oP | Rt T ¢] A]
or
[oP | Rt [x2 | a |
respectively,
Examples:
AHI R6,24

NH X2,GA(RS5)
BAL RF,LABEL
XHI ~ RA,LOC(R1+R2-S@1B)

Counter Examples:

STBS 3,LX(GAX) (G symbol not allowed
in X2 field)

WD R4 (missing operand)

OPERATION CODES OF TYPE 3

An operation code of type 3 requires one operand, R2, 4 bits
long, It is written in the form:

LoC oP R2

and assembles as 16 bits:

[OP [rR2 |

Operations of this type represent extended mnemonics for the
instructions BTCR and BFCR, with Rl set implicitly., Those defined
are listed in Appendix A,

Example:

BR RF

10

OPERATION CODES OF TYPE 4

An operation code of type 4 requires one operand, A or A(X2),
where A is 16 bits long, and X2 is &4 bits, It is written:

LOC OP A
or
LOC OP A(X2)

and asscmbles incto 32 bits:

0P | ¢] A |

0P] X2 I A 1

respectively,

Operations of this type are extended mnemonics for the BTC and
BFC basic instructions, using implicit values for the Rl field,
Those defined are listed in Appendix A,

Examples:

BZ LABEL (same as BFC 3,LABEL)

BO S@1B-5(R6) (same as BTC
4,S@1B=5(R6))

11

SECTION VI

PSEUDO-OPERATIONS

DC (DEFINE CONSTANT)
A DC line is used to define a single, 16-bit constant:

LOC DC EXPRESSION

DS (DEFINE STORAGE)
A DS line is used to reserve a number of bytes in storage:
Loc DS EXPRESSION

Symbols used in the expression must have been previously
defined,

The line
S@¢ DS 35C
is equivalent to
S@@ EQu *
ORG *+35C

12

END

An END line is used to indicate the end of the source program
and the address of the first memory location to be executed,

END OPERAND

OPERAND may be any expression, but it must be present and
defined (it may be @),

Examples:

END LSTART
END ¢
Counter Examples:
END (operand must be present)
END SASF (operand undefined)

EQU (EQUALS)

An EQU line is used to define a symbol without generating a line
of object code:

LOC EQU EXPRESSION

where LOC is a G, L or S symbol, Symbols used in the expression must
have been previously defined,

13

OPD (OPERATION DEFINITION)

The OFD line may be used to add instruction and pseudo-operation
mnemonics to the set recognized by MI-3, 1In fact, MI-3 itself uses
the OPD to define all mmemonics except OPD itself, which is built in.
When MI-3 is assembled, a deck of OPD cards is also assembled, For
the Venus instruction set, the OPD cards are listed in Appendixes C
and D,

OPD is useful for defining new mnemonics for instructioms, or
synonyms for pseudo-operations, Only additions are possible; old
mnemonics may not be deleted, nor may values associated with them
be changed, or entirely new pseudo-operations added,

OPD is written:

OPD ' OPNAME' , OPCODE, FORMAT

which is assembled into the operation table as:

[OPNAME OPCODE | FORMAT

where

OPNAME is a 1 to 4-character alphanumeric string which is the
desired mnemonic,

OPCODE is an expression in which all symbols have been previously
defined, It specifies the 8 bit operation code to be associated with
the name OPNAME for instructions. It must be zero for pseudo-operations,

FORMAT is an expression in which all symbols have been previously
defined, It is an 8-bit field; the last 4 bits specify the instruction
types 1, 2, 3 or 4 or the pseudo-operation type (see Appendix A).

The first 4 bits of FORMAT are meaningless except for instruction

types 3 and 4, in which they specify the value to be used in the Rl
field,

14

Examples:

OPD 'STBR',22,¢1 (type 1, OP = 22)

OFD 'BL',72,84 (type 4, OP = 72,
R1 = 8)

OFD 'OP',00,08 (type 8, OP = ¢ for

all pseudo-operations)
(adds a new name for
DC)

Note that since definitions are made directly into core, a
definition is permanent until 2 new copy of the assembler is loaded,

ORG (ORIGIN)
An ORG line is used to set the value of the location counter:
ORG EXPRESSION

where symbols used in the expression must have been previously defined,

PUT

A PUT line is used when a program is to be assembled into locations
ocher than those from which it will be executed, Thus, MI-3 must
1ssemble the instructions as though they were in the locations from
wnich they will be executed, but it must PUT them in a different
place.

The PUT is used most often in one of two situations: to relocate
code which will later overlay part of the assembler; and to assemble
code with origin zero (for relocation by index) without destroying the
low address region of memory,

The PUT is written:

PUT EXPRESSION

wnere symbols used in the expression must have been previously defined,

15

The effect of a PUT line is to define a constant that is added
to the assembled address of each line of code to obtain the address
in core at which it will be placed, The addition is done modulo 218,
causing a wrap-around effect,

Example 1:

ORG 25@¢@
PUT 1000
S¢1 B *

S@l and * will be defined as 25¢@, and the instruction will be
stored in 350,

Example 2:
ORG 5509
PUT ED@®
B *

* is assigned the value 55@@, and the instruction stored at
location 42¢@, since ED@P is equivalent to =13¢@@., It could also
have been written:

PUT #-13¢¢

Example 3:
ORG 47E2
S11 EQu *
PUT 45@@-S11B
B *

assembles into location 45@@, with * and S11 defined as 47E2,

Note that in Example 3 the output of the assembly will be placed
at 1¢@¢ regardless of where it is ORGed,

16

SID (SET INPUT DEVICE)

A SID line controls the source of symbolic input to MI-3, The
only valid possibilities are:

SID O paper tape
SID 1 keyboard
SID 2 card reader (initial value)

The operand field may not contain an expression; only the explicit
values, @, 1 and 2 may be used,

S0D (SET OUTPUT DEVICE)

A SOD line controls the printing of a listing and the output
device on which it is to be printed, The only possibilities are:

Sop 1 teletype
sop 2 printer (initial wvalue)
Sop 3 no print

The operand field may not contain an expression; only the explicit
values 1) 2 and 3 may be used,

17

SECTION VII

IDIOSYNCRASIES

Some of the idiosyncrasies of MI-3 are discussed briefly below,
It is possible that as time goes on changes may be made to MI-3 which
eliminate or change some of them,

MESSAGES

There are only four messages built into MI-3. All four are
forced to the operator's teletype, Two of them announce the beginning
and ending of an assembly, The third recognizes a system failure
which has occurred in the form of an illegal instruction during the
assembly, The fourth, consisting of the words ERROR IN FOLLOWING
LINE, represents MI-3's total capability for diagnosing user errors.
At this point, the user must enter a valid line on the teletype which
is to replace the one found to be in error,

INPUT

When using the on-line teletype as an input device, MI-3 provides
no editing capabilities whatsoever, The usual abilities to cancel a
line or to backspace characters are not present,

The specifications state that the end of the DATA field is
determined by a space, 1In fact, it is determined by the first char-
acter which MI=-3 recognizes as being invalid in a data field, Thus,
for example, characters such as & or % will, in fact, terminate the
data field without any error indication,

When MI-3 is first entered, it identifies itself by logging a
message on the console teletype, If the card reader, the assumed
input device, is not ready with cards, MI-3 will wait until it is,
with no indication of what it is waiting for, Similarly, MI-3 will
wait until the printer, the assumed listing output device, is ready;
it will have read the first card. In both cases, readying the device
allows operation of MI-3 to proceed without restarting,

18

OUTPUT

The binary results of the assembly are stored directly into
core memory, There is no other computer processable output,

The output listing does not print out the binary values assembled
nor their locations in memory. While S symbol values are logged when
the S symbol is defined, no indication is given of the value of G or
L symbols, Undefined symbols are not listed, nor, for that matter,
are defined symbols,

LANGUAGE

The concept of S symbols appears entirely unique to MI-3, The
fact that a particular S symbol can appear any number of times in a
given assembly is, perhaps, the most unusual aspect, Coupled with
this is the need for the programmer to indicate to MI-3 whether the
particular S symbol referred to has been defined earlier or will be
defined later in the assembly,

Character strings may not be written explicitly, The only way
character strings can be specified is to write tham as the series of
equivalent hex constants in DC statements, or in hex as instruction
operands,

All numbers entered by a programmer as part of the program must
be entered in hex, No provision is made to handle numbers written
in decimal (base 10) form.

19

SECTION VIII
EXAMPLES
In the examples below, the output of the assembler is shown as

a 4 hex digit location, followed by a colon, followed by 4 or 8 hex
digits representing the code stored in that location.

Example 1:
ORG 20¢¢
B 4(3)
XHR RI1,RD
LHI RC,3DEl
BR FC

assembles into:

200@: 7403 @0@4

2004 : C71D
2¢@6: D8C@ 3DEL
20@A: 84@C
Example 2:
ORG 1F@¢
B *
B Sk
B Fomke4]
B 4=l=1=1-1

assembles into:

1F@¢: 7400 1F@@
1Fg4: 7490 3E@8
1F@8: 7400 @@l
1F@C: 7400 @009

20

Example 3:

assemples intos

Eample 4

ascembles into:

S¢d
Spg

3009
304 :
3008
3@@cC:
301¢:
3014 ;

S¢8

S@7

4PFQ:
4{F2:
LPF4 -
40F6:
4PF8:

RG

HoEwWwwwo

7400
7499
7400
7408
7409
7400

ORG
DC
DC
DC
DC
DC

1C8B
4PF8
40F1
4LPF6
81EA

3009
SP@F
S¢@B
S@gB
SFCF
S@@B
S@@B

3¢d8
3000
3000
3¢14
3p¢8
3¢¢8

4OFy
897FD1C8B
S@7F
S@8B~1

%

S@E8B-+*

23

Example 5:

ORG 44E¢Q
S@9 DS 200
S1¢ DC S@9B
511 DS 4
B *
assembles into:
4LEE@: LUEQ

46E6: 7400 4L6E6

22

APPENDIX I

MNEMONICS AND VALUES

The set of mnemonics supplied in the version of MI-2 which runs
on the Venus machine is summarized below., As far as the assembler
is concerned, mnemonics fall into fifteen types, each identified bs
a type code, The type determines the format and meaning of the DATA
field of instructions, and identifies extended mmemonics and pseudo-
operations:

1 16 bit instructions
2 32 bit instructions
3 Extended mnemonics for 16 bit instructions

(BTCR, BFCR)

4 Extended mnemonics for 32 bit instructions
(BTC, BFC)
5 ORG Origin
6 EQU Equals
7 END End
8 DC Define Constant
9 DS Define Storage
A PUT Put
B OFD Operation Definition
C S0D Set Output Device
D SID Set Input Device
E LEND Local End (Not implemented)
F Not assigned
23

Instructions appear in a 16 x 16 matrix in which the 8-bit
operation code is formed by taking the row number in hex followed
by the column number, also in hex,
column A; its operation code is 7A,
C are of type 1; those in the other rows, type 2,

For example, CALL is in row 7,
Instructions in rows 2, 8 and

Extended operations are listed separately,

0 1 2 3 4 5 6 7 8 9 A B C D E E__
P \Y STB | POB | STH PO | SSN OC| RD | WD |SS
STBR| POBR| STHR| POR | SSNR OCR |RDR |{WDR |SSR |JOBA
PS VS | STBS| POBS| STHS| POS | SSNS
DIE | UNQP PUC | POC
i .
i i
BXLE | BAL | BIC | BXH |BFC [SIO |EL1 |SET | RSET RE CALL ICOR| SRHL| SLHL|SRHA| RLH
[BXLR | BALR| BTCR| BXHR| BFCR
|
PU | PUB |LSN | NH |CLH OH | XH | LH LB | AH SH | MH | DH | ACH! SCH
i
i PUR | PUBR|LSNR|NHR (CLHR| OHR |XHR | LHR | LBR | AHR | SHR [MHR |DHR |ACHR |SCHR
)
| PUI | PUBI|LSNI|NHI |CLHI| OHI |XHI LHI | LBI | AHI | SHI |MHI |[DHI |ACHI |SCHI
i
i | PUS | PUBS|LSNP|NHS |CLHS| OHS [XHS LHS | LBS | AHS | SHS |MHS |DHS |ACHS |[SCHS
[
E PUP | PUBP|LSNS |NHP |CLHP| OHP|XHP | LHP | LBP | AHP | SHP |MHP |DHP |ACHP |SCHP

24

EXTENDED OPERATIONS

Hex Mnemonic Equivalent Operation Meaning
. 720 NOP BTC @ No operation
721 BM BIC 1 Branch on minus
722 BP BTC 2 Branch on plus
723 BNZ BTC 3 Branch on non-zero
723 BNE BTC 3 Branch on not equal
724 BO BTC 4 Branch on overflow
728 BC BTC 8 Branch on carry
728 BL BIC 8 Branch on low
v 740 B BFC ¢ Branch
741 BNM BFC 1 Branch on non-minus
' 742 BNP BFC 2 Branch on non=-plus
743 BZ BFC 3 Branch on zero
743 BE BFC 3 Branch on equal
748 BNC BFC 8 Branch on no carry
748 BNL BFC 8 Branch on not low
820 NOPR BTCR @ No operation
820 BR BFCR ¢ Branch

In the hex equivalent, the first two digits are the operation
. code of the basic instruction; the last digit is the Rl field, The
operations based on BFC and BTC are type 4; those based on BTCR or

BFCR are of tvpe 3,

APPENDIX II

FORMAL SYNTAX

BASIC DEFINITIONS
A lower case b is used to denote a single blank character,

<spaces> :: = b | <spaces> b

<hex digit> :: = @#]1|2]3|4|5|6]7|8|9|A|B|C|D|E|F
<integers :: = <hex digit> | <integers <hex digit>
<S symbol> :: = S <hex digits <hex digit>
<backward local references :: = <S5 symbol> B
<forward local references :: = «S symbol> F
<alphabetics :: = A|B|...|2Z

<digits :: = @|1]2|314]|5]|6|7]8]9

<alphanumeric> :: = <alphabetics» | <numerics

<L symbol> :: = L <up to 5 alphanumeric>

<G symbol> :: = G <up to 5 alphanumeric>

<symbol> :: = <8 symbol> | <L symbols> | <G symbols>
<loc fields :: = <symbol> | <empty>

<register identifiers :: = R <hex digit>

EXPRESSIONS

<expressions :: = <forward local reference> |
<proper expressioms | <L symbols> | <G symbols
<defined values :: = <proper expressioms |
<previously defined L symbols |
<previously defined G symbols
<additive operators :: = + | -
<terms :: = <integers | <backward local references 7
<register identifiers | *
<proper expressioms :: = cterms | <proper expression>

<additive operator> <terms

26

LINES

<line> :: = <loc field> <space> <basic lines | <ORG lines |
<END lines | <DC lines [<DS line> | <EQU lines |
<OPD line> | <PUT line> | <SID lines | <SOD lines

<basic line> :: = <op code of type 1> <spaces <data field of type 1> |
<op code of type 2> <space> <data field of type 2 |
<op code of type 3> <spaces <data field of type 3> |
<op code of type 4> <spaces <data field of type 4~

<data field of type 1> :: = <4 bit operands,<4 bit operands

<data field of type 25 :: = <4 bit operands,<16 bit operand> |
<4 bit operands,<16 bit operands (<4 bit operands)

<data field of type 3> :: = <4 bit operands

<data field of type 4> :: = <16 bit operands |

]

<16 bit operands (<4 bit operands)
<4 bit operands :: = <proper expressions
<16 bit operands :: = <expressiom>
<DC line> :: = <loc field> <spaces DC <spaces> <expressioms
<DS lines :: = <loc field> <spaces DS <spaces <«defined values
<END lines ::

<space> END <spaces <defined values

]

<EQU 1Zne> :: = <symbols <spaces EQU <spaces <defined values

A
o
8
,:.:.f
v
)

<space> OPD <space> '<up tp 4 alphanumerics',
<defined values,cdefined values

<ORG 1lin ! = <space> ORG <spaces <defined values

L[}

<PUT line> :: = <space> PUT <spaces> <proper expressioms

<SID lines :: <spacexs SID <spaces <input devices
<input devieces :: = 0|1]2

<SO0D line> :: = <space> SOD <space> <output controls
<output controls :: = 1[2'3

27

a1=1)
oeD
oPD
oen
orn
(9]=1p]
aPn
fol=In
orPn
oen
oPD
nen
al=1s)
nen
nen
Ao~
p]=lnl
orn
oPD
[gl=1n
npPn
nen
oPn
lalzln
el=1p'
oPrD

nen
[al=lp]
nen
oPn
oen
oen
nen
0PN
oen
nen
gl=lal
[@l=1p]
nPn
0en
lo]=1p]
oPrn
oPn

VTACH s RE 4 N2
TACHI ' 4DE4O2
YACHP Y sFF 02
TACHR !t 4CF 401
VACHS t JFFE ,AD
TAHY yRA M2
TAHT ' NA GNP
TAHP Y yFA N2
TAHR Y yC AWM
PTAHS ' yFALO2
TR ,Ta .04
TRAL Y4 714n2
TRALDY JR] N1
tRC 7o, A
TRE Y4744
1eFRY ,A44N
1BFEC Y T74,,Nn7
TRFCRYyRa 4N
'RL''y72,4R4
TRM1 4, 72,14
tRNC Y, 74 ,R4
TRNE 1 72,734
TRNL 'y 74,84
TANMY 74,424
TRANP Y 474,424
TRNTZ 1 4724324
'R0 726484
18D 1 472,24
1PD11 4R M7
1aTCrT72,n2
TRTCPR Y 4R2 401
TRXHT 4 73402
TAXHDP ! {83401
TAXLF ' 470402
IBXLRY80.01
1R7Z1 474,434
TCALLY2T7ALN?2
1FLHY a8, A2
ICLHT N NS 02
1CLHP Y yFENP
1CLHR Y ,C8,4N]
TCLHS 1 yES02
INCreNNeNA
INH1 RN 4O2

APPENDIX III

ALPHABETIC LIST OF MNEMONICS

ADD
ADD
ADD
apnp
ARD
ADD
AN
ADD
aADD
AND

RRANCH
BRANCH
R ANCH
RRANCH
RRANCH
PRANCH
PANCH
SRANCH
RPANCH
RRANCH
RDANCIH
B ANTIH
AR ANCH
RDANCH
2L ANCH
ERANCH
RPANCH
RRANCH
RQANCH
AaRAN TY
RUANCYH
ERDANCH
RRANCH
RRANTCH
RRANCH
RBRANCH

WITH
WITH
WITH
WIiTH
WiTH

cARRY
CARRY
CARRY
CARPY
CApPY

HALFwWO®RN
HALFWORD
HALFWORM
HALFwWORD
HALFwWORN

HALFwORD
HALFwOPN .
HALFwWORD
HALFwWORD
HALFWORD

AND L INK
AND L INK
ON CADRV
AN FNUAL

N
ON
N
ON
AN
ON
ON
™ \ll
oN
NN
AN
ON

FALSF
FALSF
LOw

MINUS

MOT
MOT
nNAT
NOT
NOT

PLUS

NN
ON
ON
N
ON
ON
ON

INDF X
INPEY
INDF X
INDF X
ZFRO

SURNTINE CALL

CAMDADE
COMPADF
comMe ADF
COMPARE
COMDARF
NEF ITNE
DIVID H

28

LOGICAL
LOGICAL
LOGICAL
LOGICAL
LOGI1CAL
CON
ALFwWORD

UNCONDI T INNAL

FAUAL RFGISTFR

CONMNPTTIAN
CCNNITION

N CADDY
FOUAL
LOw

MTNUC
PLUS
TEPRPOD
OVFRFLNW

UNCAONDTITIANAL
TRUF CANNITION
TeuE CONDITINAN

HT W
HI1GH
LOwW 02 FQUAL
LOW OR EQUAL

HAL Fynon
HALFwAon
HALFWORD
HALFWORD
HALFwORD

lal=1a
o] =la
=1}
Ao

PN
[a]=1p'
lol=1a)
[al=ln]
e
PN
o1=lp]
nen
oPD
aen
91=1p)
[gl=ln]
oPn
[a]=la
[@l=ln]
[al=inl
ol=1n
nen
nen
nPN
nPn
oPnN
nen
PN
oPn
[al=i0
noen
noQ
nen
nen
oPD
oen
lo]=ln)
o1=Ip]
0Ben
[pl=in
nPrn
nPnD

IRHT Y g yND
INHP Y ER AD
INHP 1 PN
INHS T TN yN2
INIE L 45N4aN1
INS 140N 09
'FL1'476402
TEND ' ¢ NN 407
IFQU Y g "Ny NG
VICORY ¢ 7R N2
t JOBAY s 2F .01
LA RQ.N2
LRI Y WNO.N2
T1LBRPY FO.02
1LRRt ,CO401
LESY sEGeN2
VLFNMD Y s OO0 g OF
"LHYyaR N2
tHLHI "y NR«N?2
'LH‘:"QFQQP?
tHLHRY s CR4N]
TLHS 1 4 FR.02
TLSMY yRI4NP2
TLENT 1 eN3402
FLEND Y FT 4N
TLEND I (M
TLENS 1 ,F3 4,02
ITMHY JRC 0D
IMHI Y 4 NC N2
TMHP Y EC N2
IMHR 1 CC 40
TMHS t (Fr an?D
TNHY B N2
INHT Y DN N>
TARNHP T s F4 4072
TNHR Yy Ca 401
TNHS Y sE44N°2
IMNOP Y, 72404
TRNDDY A2 N7
1NCIe1B4np
1NCDY g2m N
1NHY ,OBR ,NAD
1OHT 1t gNE N>
TOHP Y yF&«N2

nNIvID
ol TS e]
NIVID
nIvVID

F HaALFwNoD
E HALFwADN

F HALFwOPD
= HALFWORD

JOR <UICIDE

DEF INF STORAGF

FNTFR LFVFL 1
FND
EauaL

THFEMK FOR PACGE TN CNDF
FETCH JOR AREA LOCATION

LOAD RYTE
LOAD BYTE
LOAD BYTE
LOAD RYTF
LOAD RYTE
LOCAL FND

LOAR
LOAD
LOAD
LOAD
LOAD
LOAD
LoCAL
LOCAL
LOCAL
LOCa',

HALFWODRN

HALFWORPD IMMEN]ATE

HALFWORD
HALFwWORD
HALFWNRM
STRFAM NAMFE
STREAM NAMF
STDFAM KNAME
CToFEAM MAME
STRPFAV NMAMCO

MULTIPRPLY
MULTIPLY
MULTIPLY
MULTIPLY
MULTIDLY

HALFWORP
HALFWNRN
HAILFWwORD
HALFWNARN
HALFWwNARD

AND HALFwWADRM
AND HALFwOBN
AND HAL=TWORD
AND HAL FwoRrnN
AND HALFWGCRD
NO ARERATION
NO ADEDATION

QUTRUT TNAMMANP
ouUTBUT CNMMAND

N HALFwNDND
nR HALFWORD
OR HALFWORD

29

non
ABA
Ial=1a
mos
al=1n
AN
A
no~
Salo)
Ao~
AP~
ADE
~oR
non
~or
al-la
al=Tp
o] =]
ADN
~pn
non
fal=la)
~APR
neD
oen
Sl=ln
nen
el=Ia)
nen
ol-1a!
o1=1a)
orn
oen
nen
~DN
al=la
DR
al=]a}
lal=1a)
nen
ABR
non

’

noen

TOHR Y 4y CHRe D1
AR G FE N2
1ADRGY AR, AS
LN =N B Wl ok~
100,15 ,N2
IDARY 17,92
1DAROY 27, A
TDNRSE g3, A2
1POCY E3,01
1ENDY 25,01
1tDRceY A8, N2
1DC Y ,3r A2
1D g R 402
IDLIRY yRD A2
tDIJR T ,N24,"D
IDIRD I yF2 ">
IDURDRY 4 C 24N
IDURC Y FD 2
IDICY y=52 .01
1DIJT 1 gN] 402
IPUIP Y F 14N>
TPURT (1401
IDUS Y g5 442
IDITY g"NAGNA
'PDt41Ce02
1RNPR1 4 2C 401
IDFETRY g 7,02
TRLHY s 754,02
IDSETY 78407
1CSCHY PE A2
1SCHT Y PF "2
PSCHD Y FF 4N2
SCHR 1 4CF,N1
SCHS 1 4EF 402
SET1 77402
SH1 JRP N2
1CHT R A
1CHP ! yFR4N2>
1SHR G CR N
1EHS ! ,ER A2
1CSIDY e NO AN
100475402
SLHL Y« 7P N2
EANI 4PN ¢ "

- @ - o=

OR HALFWORD

R HALFWORD

ARTIETIN

D OF SFEMAPKOPFE

DOPR FROM STArCK

ENE AYTE FoAM aTAMw
DAP RVTFE FoM CTAC K
POE BYTF Soom aTacwe
FoOP FROM CONTRAL. STA
DORP FRMAM STACK

nAD FOAM STACK

D NE QFMADKADT

DUISH YALFWADN [NTA ©
DI'"H AYTE [NTN STAFK
DS AVTE INTA STArE
PlLISH PYTF INTNH STArYC
PUEH BRYTE [MTH STAC
PLUSH AYTE INTO STAr<
PSR [NTN CONTRAL T
DLITH HALFWADR ITNTA
DS ERAN EDAMRDAN
DileW HALFWADRDA [NTA <
PUSH HALFMARN (KT <
PuT

REAMN TATA

DFEFAN MATA

SURROUTINE BFTURN

Cw

TAT

A~

TR

TACK
TACw

DATATE LFFTWARN HALSwAPRN
PESET CONDITINN/NN BEGICTEDR

SURTRACT WITH CAPRYV
CSLIRTRACT WITH CADRY
CSURTRACT WITH CARDV
SURTDACT WITH CADRY
SUBRTRACT WITH CARDYV
SET CONDITION/ON PEG

cuaTRACT
SLRTHACT
CUURTRACT
S RTOACT
SLIRTDACT

HALFuiARN
HALERWNRD
HALFwWADN
HALFWORP
HALFwWARD

CSYSTEM INPUT DFVICE
START /0 FHANNEL
SHIFT LFEFT LOATCAL
CYETFM AUT®ILIT NEVTIeF

30

HALFWARD
HALFwARD
HALFwADR™
HALFWORD
HALFwZEn
I1STFR

apn
oPn

oPnN
0en
oep
oPD
oPD
nen
p1=1p}
ner
oprn
od=la
ol=1n)
a]=1a)
nen
nen
lal=ln}
la]=1a
opn
oD
nen
oen
e]=1n}

1EDHA Y y7F ¢N2
1EDHL Y 704 02

ISS1.1F NP2
1SSNY 16472
TEENP 1 4 26401
TEENE 4, /N2
PSSR Y W PR N1
1STRI 412402
1QTROL (22,01
1CTRC Y P, N2
TSTHY 4 14402
1ETHD Y g 244N
PETHE 1434402
TUNCP 451401
'Wiel1402
TVS1,31402
TNt 4 1NWN2
WINPT 42Ny N1
IXHY 4P T74N2
IXHI ' 4D7402
IXHP T F7402
IXHR ' 4 C7401
IXHS 1 4E 7,02

CSHIFT RIGHT AR THMST I~
SHIFT RIGHT LOCTI AL

SENST STATUS
STOR:S STREAM
CSTORE STREAM
STORE STREAM
SFNSF STATUS
STORF QAVvVTE
STODE RVTF
STORF RYTE

NAMF
NAMSE
NAM=

STORE HALFwORN
STODF HALFwWORN
STORE HALFWORD

UNQUEUE WHEN

DISK SswAP

V OF SFMAPHORF
V OF SEMAPHORE

WRITE DATA

WRITE NATA

EXCLUSTVE OR
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR
EXCLUSIVE OR

31

HALFwCRN
HALFwOen
HALFWORD
HALFWORD
HALFWORD

APPENDIX IV

NUMERIC LIST OF MNEMONICS

NP 1NRGI 4NN NS ORIGIN

OPN 1EQUY ¢y NN G NE FQUAL

OPN IENDY (NN W07 END

OPD INC NN 408 DEFINE CON

OPD NSt eNN 40O DEF INE STORAGE

CPND 1BUT Y NN 4NA PUT

OPN 150D «N0«0C SYSTEM OQUTPUT DEVICE
OPN 121D NO«ON SYSTEM INPUT DEVICF
QD YLFND 1 NN 4 OF LoOCaAL FND

ODN 1D, 1 NyNP P 0OF SFMAPHORF

NN 1yt a1 .02 vV OF SFMAPHORF

APN YSTR ,12.,Mn2 STORFE BYTE

NPA 1PORY 173,07 POP RVTE FROM STACK
NDM 1STH 4 14402 STORE HALFWORD

QPN P04 15,02 POP FROM STACK

QPR 1SENT 4, 16+.02 STORF STREAM NAMF

NPN 1OC s 1RWN? oOUTPUT COMMAND

NN 1RNI 41 C N2 RFAD NATA

0D twWDet,1NeN> WRITEF DATA

PN 1881, 15,Nn?2 SENSF STATUS

OPN 1STRR 1 422,01 STOR I RYTE

ABN 1PORBR I 423,01 POP RYTE FROM <TACK
OPD 16THR 1 424401 STORE HALFWORD

0PN 1PNDRY 428,01 POP FROM STACK

NDN 1CCENP I 264N STORE STREAM NAMFE

0PN 1INCRt 42PN ouTeyT COMMAND

0PN 1RPDR !, 2C N1 REAN DATA

OPD twWDR!' 42D .M WRITE DATA

OPN 18SR!*' 42F 01 SENSE STATUS

PN v JOBAY 4 2F 401 FETC4 JORBR AREA LNCATION
NPD 1RC1 AN 02 P OF SEMAPHORE

OPD 'WSY 431,02 v OF SEFEMAPHORF

NPN 18THS 1, 32,07 STORF RYTE

ADND 1COARC T 3 ,NP pPNAP RYTFEF FPOM cTACK
APA 1CTHC 1 (24 ,N2 eTORF HALFwNDN

NOND 1PDS 435,07 POP FROM STACK

OPD 1SSENS 1 ,4,6.02 STORE STREAM NAMF

OPN INIE's50.01 JOR <cylCI1DE

OPD TUNQP?Y,,51.01 UNQUFUE WHEN DISK SwAP COMPLETE
ORPD 'DUCTY 452401 PUSH INTO CONTROL STACK
DPN 1POCT! 45301 POP FROM CONTROL STACK
PN 1YL F 1, 7N,N? RDANCH NN INNFX LOwW OPR FQUAL

ADN 1RAL 1 471407
IPD TRTCY 472472

ROANCH AND | TNY
RRANCH ON TRUFE CANDITINN

32

g1=1s}
Sl
ol=1p}
nen
nen
1=t
Ia]=1a
9]=1p)
oPn
opn
oen
slzlp]
nen
o]=1a)
nen
(9l=]p]
QPN
npn
oPD
orp
Do
ADR
nen
al=ln
nen
o1=In}
al=1b]
0PD
non
ADR
nen
ol=1p}
nep
cPD
2PN
cen
oen
lal=la}
oep

gl=1n
oPn

opn
pi=dis

'NOP Y 4 72,n4
1aMI1 , 72,14

'RP1 4,724,224
TRNF Y 472438
TRANZ Y 472,34
1RO 72,44
TRCte72424
'8, 72,84
TRXHY s 73402
VRAFCY ¢ 74 402
1B 474,404
tRNM? 74, 24
'RNPY 74428
VRE 1,74 4724
tRZ 14744
'BNC Y74 4,84
TRNL 'y 74484
110 T7RL0F
VL1 ¢ 764N2
PSET Y 477402
IDCETI 7R, N>
IRETN G ,70,Nn>
YCALL '4s7A402
PICORY 7R ,,N?
YSPHL ' 4 7C 02
'ELHL Y« 7Ds 02
YTERHAY 4 7F 4 N2
TRLHTY s 7F « 02
TRAXLP Y AN, N
lnﬂLDl.Q’.“\T
YARTCR 1 A2 ,M1
TMNOPR 482,03
TRAXHP 1 483.N1
"RERY yRA LN
'RFCR1 844N
TRR''«RB4,073
1DUI R 0P
OB RO, N5
ITLEN yR3 A7
tNH yR4 4N
TCLH' yRBE,02
TAHY s RALN2
IXHY s RT7 4,02
TLHY yRB A2

MO OBRFRATION

RRANCH NN MINUS

BRRANCH ON PLUS

BRANCH ON NOT FQuUAL
RRANCH NN NOT ZFDRO

ROANMCH AN NYFDEL N

[RANCH NN CARRY

RRANCH ON LOW

RRANZIH NN INPDFX HIGH
RRANCH ON FALSFE CONDITION
ARANCH UNCONDITINNAL
RRANCH ON NOT MINUS
RRANCH ON NOT PLI1IS

RDANMCH NN FNUAL

RRANCH NN Z7FRO

BRANCH ON NO CARRPYV

RRANTH ON NOT LOw

STACT 1/0 CHANNFEL

ENTER LFVEL 1

SET CONDITION/ON RFEFGISTFDR
RESFT COANDITION/NN PFAICSTFR
SURDRNIT INE DETIRN
SURRNOUTINE CALL

CHECK FOR DAGF [N COPRF
SHIFT RPIGHT LOGICAL

SHIFT LFFT LOGICAL

SHIFT RIGHT ARITHMFTIC
ROTATE LEFTWARD HALFWNRD
RPANCH NN ITNNDFY LNOw 00 =N jAL
BRANCH AND | TNK

RRANCH NN TORUS CANATTTAN
NO NPFRATION

BRANCH NN INDEX HIGH
SRANCH FQUAL RFGISTFP
BRANCH ON FALSE CONMNITION
RRANCH UNCONDITINNAL

PUSH HALFWORD INTO STACK
PUSH RBYTFE [NTNHD STACK
LOAD STREAM NAME

AND HALFWORD

COMPARE LOGICAL HALFWORD
OR HALFWORD

FXCLUSIVE OR HALFWORD
LOAD HALFWORD

33

noN
0opn
(ol=]a}
(a]=1a}
oPD
0PD
oPD
oPn
oFD
oPn
nep
nen
fol=Te)
0oD
0PN
[a]1=1p]
ol=1a
o]~1n)
[a]=1p]
orn
oed
oPD
0PD
(ol=1p)
[gl=1p]
0PN
e l=1p)
0PN
oen
0P
oen
oen
nen
orP
olals)
opn
(o]=1p!
oPD
(o1=1p}
o1=1p}
nep
(plels}
o 1=1p}
oPn

LR RO, N2
CAHY RA L2
1S AR, N2
TMH? RC N2
IDH!' 2D 02
YACH!' ¢« BE 02
1SCHY sBF 02
'PUR!' 4C1s01
TPUBR ! ¢ T 2401
LSNP ,C2,01
INHR Y T840
1CLHP Y R M1
TOHR Y 4 CHe N
IXHR ' 4 C7401
TLHR ' 4T R.01
1LRPRY ,Ca,,01
YAHR Y yCALO1
1CHR ! CR4N1
ITMHR Y g CC 401
tDHR ' 4y CDL 0O
YACHR ! 4, CE .01
1CCHR Y 4 CF 401
'PUTI'eD1402
TPUBT * D24 02
TLENT N3 N2
ITNHT Y yD4a 402
TCLHI Y D502
TOHT Yy DN&ELO2
IXHI " 4yD7402
"LHI'«D8e02
LRI Y 4DN9.07
tAHT Y ¢ DALO2
tCHI Y DR NP
tMHT ' ¢DC N2
IDHI Y NP 0O2
YACHT * yDF o 027
1SCHI ' 4WDF«02
TRUS Y sEl1e02
TPUBS 1t +E2.02
TLENS Y 4E3,072
INHS Y ¢ F g eNP
ICLH:.‘F-'—':’(\P
TOHS ! F6.02
IXHS Y gE7.02

LOAD RBRYTE
ADD HALFWORD

SUBRTRACT HALFWORD
MULTIPLY HALFWORD

DIVID HALFWORD

ADD #I1TH CARRY HALFWORD
SUBTRACT WITH CARRY HALFWORD
PUSH HALFWORD INTO STACK
PUSH BYTE INTO STACK
LOCAL STREAM NAMFE

AND HALFWORD

COMPARE LOGICAL HALFWORD
OR HALFWORD

EXCLUSIVE OR HALFWORD
LOAN HALFWORD

LOAD RYTE

ADD HALFWORD

SUBRTRACT HALFWORD
MULTIPLY HALFWORD

NDIVIDF HALFWORD

ADD WITH CARRY HALFWORD
CSURTRACT WITH CARRY HALFWORD
PUSH HALFWORD INTO STACK
PUSH RYTFE [NTO STACK
LOCAL STREAM NAMF

AND HALFWORD

COMDARF |LLOGICAL HALFWORD
OR HALFWORD

EXCLUSIVE OR HALFWORD IMMEDIATE

LOAD HALFWORD IMMEDIATE
LOAD RYTFE

ADD HALFWORD

SURTRACT HALFWORD
MULTIPLY HALFWORD

DIVIDE HALFWORD

ADD VITH CARRY HALFWORPH
SURTRACT WITH CARRY HALFWORD
PUSH HALFWORD INTO STACK
BUSH BYTE INTO STACK
LOCAL STREAM NAMFE

AND HALFWOSD

COMPARE LOGICAL HALFWORD
OR HALFWORD

EXCLUSIVE OR HALFWORD

34

o 1o al)
0PN
oRn
non
al=la
nBN
nen
gl=lp]
nen
nen
al=Ta}
S]=1a}
alrle!
[al=1n
ol=1p
lol=1n!
opn
a]=Ia)
OPD
al=1p}
alzla
ner
lol=la}
END

"LHS ' 4ER4Nn>2

"LRSY ,FO,n>

tAHS Y ,FA N2

YSHS Y ER, A2

tMHS Y EC o np

YRHS Y (FR A2

YACHS Y FF,0p
PROHS Y ,FF,np
1DURY 4y F 1407

1CURBI (FR N2
LSNP ,E3,0p
INHP ! yFa4 .02

1CLHP Y (FE N>
POMHP Y FA AP

tXHR Y ET7,ND

IWLHDY ,FR,ND

"LRPY Fa,n>

YAHP Y yFAWNZ

1SHP Y, FR, 02

YTMHP Y yFCoN2

1NHD Y ,ER AP

YACHD » yFFE N2
1CCHP Y JFF N2
~

LOAD HALLFWNDD

LOAD BYTFE

ADD HALFwWORD

SUBRTRACT HALFwORN
MULTIDLY HALFWARN

NIVINE HALFwWARN

ADD WITH CARRY HALEwARR
SURTRACT WITH CARRY HALFwWADN
PUSH FRAM PROAGDAM

PUSH RYTE INTO STArw
LOCAL STREAM NAMF

AND HALFWORD

COAMBARS | ORICAL HALFWwro~
D HALEWARMP

FXCLUSIVE 0OR HALFwnp~
LOAD HALFwWORND

LOAD avTe

ADD HALFWODRD

SUBTRACT HALFWORD
MULTIPLY HALFWNRN

NIVINE HALFWADRD

AND WITH CADDY HALEWADN
SURTRACT WITH CARRY HA|FwNDN

35

APPENDIX V

KWi o [NNDFX L ISTING

| KAl el WA

05252524

_________________ KEYaORD _AND TEXT_ _______________INDEX_ ___
ASTERISK (%) 3
ALPHABETTIC LIST NF MNFMANICS 31
G AND L SYMBNLS 3
MMEMONTC S AND YALUES 25
ASTERTSK (*) 3
NDERATINN CONES NF TYPFE | 9
NPFERATIAN CONFS NF TYPE 2 1n
NOFPATIAN CANES NF TYpe 3 11
NREFRATINN CNANES NF Typc 4 12
COMMENTS FIFLD 5
NC (NEFINF CONSTANT) 13
NATA FICIN 4
NATA TYPES 2
NC { NEFINF CONSTANT) 13
IC (NEFINF CONSTANT) ' 13
NS (NFEINF STNRAGF) 13
7PN NPERATINN NEFINITION) 15
S (SFT NUTPUT NEVIGE) 18
SID (SFT INPUT NEVICFE) 18
NS NDEFINF STNRAGFE) 13
FND 14
FQU (FOUALS) 14
EN C FOUALS) 14
EXAMP|FS 21
FYXPRESSINNS [
FNOMMENTS ETFLD 5
NATA FIELN 4
ne FIFLD A
LOC FIFLN b
FORMAL SYNTAX 29
FORMATS &4
n AND L SYMRAQOLS 3

36

KATC

EPGISTER

SIn

(

~

Y

CET

AND

ALPHARFTIC
AYMED T C

ALPHARETIC LIST OF
NHMES Tr | TST AF

ALPHARFETIC

NUMER T C
TRPERATION
CERATY N
1MTRATIIN
PPERATICN

SN

LISTY
LI TSN

rnNec
e
CONES

f'.];"f"_;

nnn {

SEE

{

CET

TMDEX LISTING

CEYNDRD AND_TEXT

[PENTIFIFDRS
INTASYNCRPAST FS
TADFX

TMPIHTY

TMPUT NEVICE)
TNSTRHCTIONS
INTEGFPRS
TNTROADUCT T NN

L SYMRMN} S
| ANGLIARFE

LIST NF MNFMNONICS
LIST NE MNEMONICS
L0C FIELD

MESSAGFS
MAEMONT (S
MNTMONT CS

MNEFMONTCS AND VAL UJES

NUMERTC LTIST F UNFA

AF MMNEMOMICS
OEMNEMONTCS
YOV VPE]
nrooTypr o2
nE TYDE 1
OF TYDE 4
ne; ETFELD

ArN { DPERATINN NEFINITION

MICS

NPERATTIONM CODES AF Tvyor |
NEFRATINN CANES [F TYer 3
APERATINN CONFS NF TYPE 3
APFRATTON CUNES 0OF TYPF 4

APFRATINM mFF[N[T[ﬁQ

ARG (NRIGIM)
ARIASIN |}

NITONT

MUIT2HT DFYICE)

37

)

)

lr’\,v'r%’ /eq

i [L

INNE X

v

p— —) =
0 O O

v D

26

52 :72¢

KWIC TNDFEX LISTING

1n/01/69

N5:52:26

_________________ KEYWORD AND _TYEXT_______________INDEX ____
DCENNN=NPFRAT IONS 13
DT |)
REGISTFR TIDENTIFIFRS 3
S SYMRNI < ?
ST (SFT INMPUT DEVICE) 18
SON (SFT OUTPUT NEVICE) 18
STN (SET INeYT NFVICE) 18
S9N { SFT NUTPUT NDEVICF) 1A
NS (NEFTINF STNRAGF) 1?2
S SYMANLS ?
SyMang g ?
5 AND L SvMmANLS 3
ENPMAL SYNTAX 29
WCOATIAN CPNFS NF TyPE | 9
APCRATIAN FNNFS OF TYPE D 12
NDERATTON FNNES ANE fYPE 3 11
ADEDATINA CNNES NF TYDF 4 12
NATA TYPFS 2
MNEMONTCS AND VALYDFS 25
APFOATTOIN CANES NF TYPF 1 9
AL ATIOAN CANES NF TYDFE 2 10
GRT AT CONFS NF TYPF 3 11
APTEATTON CONFS NF TYPFE & 12

38

UNCLASSTFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author) l2a. REFORT SECURITY CLASSIFICATION
; UNCLASSIFIED
The MITRE Corporation LEIETD S
2b. GROUP
Bedford, Massachusetts - i
3. REPORT TITLE
4 THE MI-3 ASSEMBLER REFERENCE MANUAL
N 4. DESCRIETIVE NOTES (Type of report and inclusive dates) i B

5. AUTHORI(S) (First name, middle initial, last name)

R. W. Cornelli

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
DECEMBER 1969 46 None
Ba,. CONTRACT OR GRANT NO. 9a8. ORIGINATOR'S REPORT NUMEBERI(S)

F19(628)-68-C-0365
b. PROJECT NO.

ESD-TR-69-371

TO00A
©; 9b. OTHER REPORT NOI(S) fAny other numbers that mav be assigned
this report)
d. MTR-267
10. DISTRIBUTION STATEMENT
{ This document has been approved for public release and sale; its distribution is unlimited.
11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY A~ viTy DIICCLOVALC Ol PlLian-
| » N/A ning and Technology, Electronic Syvstems Divi-
sion, Air Force Systems Command, L. G.
Hanscom Field, Bedford, Massachusetts
13, ABSTRACT
MI-3 is a primitive, interactive, one pass assembler which assembles in-core
code for a family of microprogrammed computers based on an Interdata 3 (I-3)
micromachine.
']
(

Lm—

DD 2V..1473

Security Classification

Security Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE

ROLE

wWT

MI-3 Assembler
Interdata 3

In-Core Code
Microprogrammed Computers

ROLE wWT

Security Classification

